## A pilot project in universal algebra to explore new ways to collaborate and use machine assistance?

Traditionally, mathematics research projects are conducted by a small number (typically one to five) of expert mathematicians, each of which are familiar enough with all aspects of the project that they can verify each other’s contributions. It has been challenging to organize mathematical projects at larger scales, and particularly those that involve contributions from the general public, due to the need to verify all of the contributions; a single error in one component of a mathematical argument could invalidate the entire project. Furthermore, the sophistication of a typical math project is such that it would not be realistic to expect a member of the public, with say an undergraduate level of mathematics education, to contribute in a meaningful way to many such projects.

For related reasons, it is also challenging to incorporate assistance from modern AI tools into a research project, as these tools can “hallucinate” plausible-looking, but nonsensical arguments, which therefore need additional verification before they could be added into the project.

Proof assistant languages, such as Lean, provide a potential way to overcome these obstacles, and allow for large-scale collaborations involving professional mathematicians, the broader public, and/or AI tools to all contribute to a complex project, provided that it can be broken up in a modular fashion into smaller pieces that can be attacked without necessarily understanding all aspects of the project as a whole. Projects to formalize an existing mathematical result (such as the formalization of the recent proof of the PFR conjecture of Marton, discussed in this previous blog post) are currently the main examples of such large-scale collaborations that are enabled via proof assistants. At present, these formalizations are mostly crowdsourced by human contributors (which include both professional mathematicians and interested members of the general public), but there are also some nascent efforts to incorporate more automated tools (either “good old-fashioned” automated theorem provers, or more modern AI-based tools) to assist with the (still quite tedious) task of formalization.