For people who can’t speak, there has been depressingly little innovation in technology that helps them communicate.

Julie Kim:

There was a reason for my particular focus: at the time, I’d been researching augmentative and alternative communication (AAC) technology for my daughter, who is five years old and also non-speaking. Underwhelmed by the available options—a handful of iPad apps that look (and work) as if they were coded in the 1990s—I’d delved into the speculative, more exciting world of brain-computer interfaces. Could a brain chip allow my daughter to verbally express herself with the same minimal effort it takes me to open my mouth and speak? How might she sound, telling me about her day at school? Singing “Happy Birthday” or saying “Mama”? I wanted the future to be here now.

But watching Savarese revealed magical thinking on my part. Behind the curtain, the mechanics of his participation were extremely low tech—kind of janky, in fact. 

The process didn’t fit the mold of what I thought technology should do: take the work out of a manual operation and make it faster and easier. The network had invited Savarese onto the program and a producer had emailed the questions to him in advance. To prepare, Savarese had spent about 15 minutes typing his answers into a Microsoft Word file. When it came time for the live interview, the anchorman recited the questions, to which Savarese responded on his MacBook by using Word’s “Read Aloud” function to speak his pre-composed answers. The types of readily available technology that could power an assistive communication device—AI, natural-language processing, word prediction, voice banking, eye-gaze tracking—played no role here. And yet, without any of the features I’d expected to see, Savarese had the tools he needed to express the fullness of his thoughts.