

Issues in Value Added in Depth

Appendix NNN-3-3 September 26, 2011

Value Added Research Center Madison Metropolitan School District September 12, 2011

Overview of value added

- Value added is the use of statistical technique to identify the effects of schools and classrooms on measured student knowledge
 - Knowledge typically measured with tests (WKCE)
- Focuses on growth of students in MMSD from one year to the next
 - More generally focuses on whether students perform better than predicted from available data

Overview of value added

- Schools receive value added measures
 - Equal to number of extra points on WKCE students at school scored relative to observably similar students across the district
 - Controls for prior knowledge, demographics
 - Positive value added means students scored higher than expected, negative less than expected
 - Overall, by grade, by subgroup

- Measures the contribution of schools and classrooms to measured student knowledge
 - School and grade levels
 - Differential effects by subgroup (disability, ELL, income, race)
 - Classroom level
- Feedback, accountability, improvement, resource allocation, evaluation

- Controls for prior knowledge of students
 - Key to value added
 - Acknowledges that what a student knows at a given point in time is not just the effect of the school he or she is currently attending, but influences experienced over a lifetime
 - Controls for those influences as best possible
 - Huge improvement over attainment-based approaches that focus on percent proficient

- Controls for measurable demographic differences across schools
 - Disability, ELL, gender, race, parent's education, lowincome status, FAY
 - Controls are informed by the data: control for ELL, for example, based on differences between ELL and non-ELL students across the district
 - Estimates from the data measures of gaps in performance between demographic groups

- Uses statistical technique
 - Also key to value added
 - Looks at the whole of data in a systematic, evenhanded, impartial way
 - Presents both a best estimate of a school's value added as well as a 95 percent confidence range to account for randomness
 - Statistical techniques are quite sophisticated: shrinkage, measurement error, longitudinal data

- Can be applied in many different situations
 - WKCE (most common approach in Wisconsin)
 - Interim evaluations (such as MAP)
 - Generally, in cases where there are pretests to measure prior knowledge and posttests to measure current knowledge, and where there are enough schools to set a benchmark
 - Value-added and value-added-like models can be used in program evaluation

- Has yielded interesting insights about MMSD
 - Variation in value-added in Madison is small (especially compared to MPS, but also compared to the state as a whole), although there are sometimes outliers
 - Difference in student achievement across demographic groups, controlling for prior knowledge, other demographics, and schools attended

- Widespread usage across many districts
- Partners of VARC include:
 - New York City Department of Education
 - Los Angeles Unified School District
 - Chicago Public Schools
 - Milwaukee Public Schools
 - Hillsborough County Public Schools

- Value added relative to district average
 - Value added is equal to the number of extra WKCE points scored by students at a school relative to similar students across the district
 - MMSD is a small reference group: 29 elementary schools, 11 middle schools
 - And, as stated before, variance is small

- Value added relative to district average
 - VARC produces results for a statewide value-added model for Wisconsin
 - State of Wisconsin would provide a larger comparison group for MMSD schools and provide more context
 - Challenge is integrating the MMSD model into the statewide model to handle extra data we have in MMSD

- Value added measures are as good as the tests they are based on
 - Covers tested material, subjects, grades
 - Does not cover untested material, subjects, grades
 - November timing of WKCE a challenge
 - Value added should always be used in concert with other information about schools

- Value added measures are only as good as the whole of data they are based on
 - Sometimes, this means you need to understand the model to put its results into context
 - Example: Value added controls for ELL and lowincome status, but the ELL and low-income students are sometimes a little different across schools
 - Use what you know to put results into context
 - But don't use it to make excuses every time

- Value added measures require some work to interpret and use
 - Built from statistical models, so you need to think statistically when interpreting them
 - You don't need to know how to build a car to drive one, but you still need to take driver's ed
 - Administrative leadership
 - Professional development for value added

- Selection bias is possible
 - Recent literature on value added has focused on selection bias, especially at the classroom level
 - Do some classrooms get students who would have grown faster regardless?
 - Study of classroom assignment: how are students assigned to classrooms?

- Drawing inferences from small samples
 - Not much of an issue at the school level, since the schools in MMSD are quite large
 - More so at the classroom level
 - We measure value added at both levels as multi-year averages for a large, informative sample
 - We always present confidence intervals so that we are clear about the extent to which randomness can affect the value-added results

Wrap up

- Strengths of value added
 - Measures effects of schools and classrooms
 - Controls for prior knowledge, demographics
 - Measures gaps across demographic groups, controlling for other things we can measure
 - Uses statistical technique to best use data
 - Adaptable to different cases
 - Increasing usage among districts in the U.S.

Wrap up

- Challenges facing value added
 - Measured relative to district average; integrate with state model for Wisconsin
 - Some knowledge needed to interpret; central office guidance and professional development
 - Only as informative as the underlying data; interpret in context
 - Statistical issues about selection, sample size; study selection, use multiple years of data

