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This article explores how differences in problem representations change both the per-
formance and underlying cognitive processes of beginning algebra students engaged
in quantitative reasoning. Contrary to beliefs held by practitioners and researchers in
mathematics education, students were more successful solving simple algebra story
problems than solving mathematically equivalent equations. Contrary to some views
of situated cognition, this result is not simply a consequence of situated world knowl-
edge facilitating problem-solving performance, but rather a consequence of student
difficulties with comprehending the formal symbolic representation of quantitative
relations. We draw on analyses of students’ strategies and errors as the basis for a
cognitive process explanation of when, why, and how differences in problem repre-
sentation affect problem solving. We conclude that differences in external represen-
tations can affect performance and learning when one representation is easier to com-
prehend than another or when one representation elicits more reliable and
meaningful solution strategies than another.

A commonly held belief about story problems at both the arithmetic and algebra
levels is that they are notoriously difficult for students. Support for this belief can
be seen among a variety of populations including the general public, textbook au-
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thors, teachers, mathematics education researchers, and learning science research-
ers. For evidence that this belief is commonly held within the general public, ask
your neighbor. He or she is likely to express a sentiment along the lines of Gary
Larson’s cartoon captioned “Hell’s Library” that contains bookshelves full of titles
such as “Story Problems,” “More Story Problems,” and “Story Problems Galore.”
That many textbook authors believe in the greater difficulty of story problems is
supported by an analysis of textbooks by Nathan, Long, and Alibali (2002). In 9 of
the 10 textbooks they analyzed, new topics are initially presented through sym-
bolic activities and only later are story problems presented, often as challenge
problems. This ordering is consistent with the belief that symbolic representations
are more accessible to students than are story problems.

More direct evidence of the common belief in the difficulty of story problems
comes from surveys of teachers and mathematics educators. In a survey of 67 high
school mathematics teachers, Nathan and Koedinger (2000a) found that most pre-
dicted that story problems would be harder than matched equations for algebra stu-
dents. Nathan and Koedinger (2000a) also surveyed 35 mathematics education re-
searchers, the majority of which also predicted that story problems would be
harder than matched equations for algebra students. In another study of 105 K–12
mathematics teachers, Nathan and Koedinger (2000b) found that significantly
more teachers agree than disagree with statements such as “Solving math prob-
lems presented in words should be taught only after students master solving the
same problems presented as equations.” This pattern was particularly strong
among the high school teachers in the sample (n = 30).

Belief in the difficulty of story problems is also reflected in the learning science
literature. Research on story problem solving, at both the arithmetic (Carpenter,
Kepner, Corbitt, Lindquist, & Reys, 1980; Cummins, Kintsch, Reusser, & Weimer,
1988;Kintsch&Greeno,1985)andalgebra levels (Clement,1982;Nathan,Kintsch,
& Young, 1992; Paige & Simon, 1966), has emphasized the difficulty of such prob-
lems. For instance, Cummins and colleagues (1988, p. 405) commented that “word
problems are notoriously difficult to solve.” They investigated first graders’perfor-
mance on matched problems in story and numeric format for 18 categories of
one-operator arithmetic problems. Students were 27% correct on the Compare 2
problem in story format (“Mary has 6 marbles. John has 2 marbles. How many mar-
bles does John have less than Mary?”) but were 100% correct on the matched nu-
meric format problem 6 – 2 = ?. Cummins et al. found performance on story prob-
lems was worse than performance on matched problems in numeric format for 14 of
the 18 categories and was equivalent for the remaining 4 categories. Belief in the
greater difficulty of story problems is also evident in the broader developmental lit-
erature. For instance, Geary (1994, p. 96) states that “children make more errors
when solving word problems than when solving comparable number problems.”

Although their research addressed elementary-level arithmetic problem solv-
ing, Cummins et al. (1988, p. 405) went on to make the broader claim that “as stu-
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dents advance to more sophisticated domains, they continue to find word problems
in those domains more difficult to solve than problems presented in symbolic for-
mat (e.g., algebraic equations).” However, apart from our own studies reported
here, this broader claim appears to remain untested (cf. Reed, 1998). We have not
found prior experimental comparisons of solution correctness on matched algebra
story problems and equations for students learning algebra. In a related study,
Mayer (1982a) used solution times to make inferences about the different strate-
gies that well-prepared college students use on algebra word and equation prob-
lems. He found a different profile of solution times for word problems than for
equations as problems varied in complexity and accounted for these differences by
the hypothesis that students use a goal-based “isolate” strategy on equations and a
less memory-intensive “reduce” strategy on word problems. Overall, students took
significantly longer to solve one- to five-step word problems (about 15 sec) than
matched equations (about 5 sec) with no reliable difference in number of errors
(7% for word problems, 4% for equations). Whereas Mayer’s study focused on
timing differences for well-practiced participants, the studies reported here focus
on error differences for beginning algebra students.

WHY ARE STORY PROBLEMS DIFFICULT?

What might account for the purported and observed difficulties of story problems?
As many researchers have observed (Cummins et al., 1988; Hall et al., 1989; Lewis
& Mayer, 1987; Mayer, 1982b), the process of story problem solving can be divided
into a comprehension phase and a solution phase (see Figure 1). In the comprehen-
sion phase, problem solvers process the text of the story problem and create corre-
sponding internal representations of the quantitative and situation-based relation-
ships expressed in that text (Nathan et al., 1992). In the solution phase problem
solversuseor transformthequantitativerelationships thatare representedboth inter-
nally and externally to arrive at a solution. Two kinds of process explanations for the
difficulty of story problems correspond with these two problem-solving phases. We
will return to these explanations after describing how these two phases interact dur-
ing problem solving (for more detail see Koedinger & MacLaren, 2002).

The comprehension and solution phases typically are interleaved rather than
performed sequentially. Problem solvers iteratively comprehend first a small piece
of the problem statement (e.g., a clause or sentence) and then produce a piece of
corresponding external representation (e.g., an arithmetic operation or algebraic
expression), often as an external memory aid. In Figure 1, the double-headed ar-
rows within the larger arrows are intended to communicate this interactivity. Dur-
ing problem solving, aspects of newly constructed internal or external representa-
tions may influence further comprehension in later cycles (Kintsch, 1998). For
example, after determining that the unknown value is the number of donuts, the
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reader may then search for and reread a clause that uses number of donuts in a
quantitative relation. Similarly, the production of aspects of the external represen-
tation may help maintain internal problem-solving goals that, in turn, may direct
further comprehension processes.

A number of researchers have provided convincing evidence that errors in the
comprehension phase well account for story problem solving difficulties (e.g.,
Cummins et al., 1988; Lewis & Mayer, 1987). For instance, Cummins et al. (1988)
demonstrated that variations in first graders’ story problem performance were well
predicted by variations in problem recall and that both types of variation could be ac-
counted for by difficulties students had in comprehending specific linguistic forms
such as some, more Xs than Ys, and altogether. They concluded that “text compre-
hensionfactors figureheavily inwordproblemdifficulty”(p.435).LewisandMayer
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FIGURE 1 Quantitative problem solving involves two phases, comprehension and solution,
both of which are influenced by the external representation (e.g., story, word, equation) in
which a problem is presented. The influence on the comprehension phase results from the need
for different kinds of linguistic processing knowledge (e.g., situational, verbal, or symbolic) re-
quired by different external representations. The impact on the solution phase results from the
different computational characteristics of the strategies (e.g., unwind, guess-and-test, equation
solving) cued by different external representations.



(1987) summarized past studies with K–6 graders and their own studies with college
students that showed more solution errors on arithmetic story problems with “incon-
sistent language” (e.g., when the problem says “more than” but subtraction is required
to solve it) than problems with consistent language. Teachers’intuitions about the dif-
ficultyofalgebrastoryproblems(cf.Nathan&Koedinger,2000a,2000b)appear tobe
in line with these investigations of comprehension difficulties with arithmetic story
problems. As one teacher explained, “Students are used to expressions written alge-
braicallyandhavetypicallyhadthemostpracticewith these…translating’English’or
’non-mathematical’ words is a difficult task for many students.”

A second process explanation for the difficulty of story problems focuses on the
solution phase, particularly on the strategies students use to process aspects of the
problem. A common view of how story problems are or should be solved, particu-
larly at the algebra level, is that the problem text first is translated into written sym-
bolic form and then the symbolic problem is solved (e.g., see Figure 2a). If prob-
lem solvers use this translate-and-solve strategy, then clearly story problems will
be harder than matched symbolic problems because solving the written symbolic
problem is an intermediate step in this case.

At the algebra level, the translate-and-solve strategy has a long tradition as the
recommended approach. Regarding an algebra-level story problem, Paige and Si-
mon (1966) comment, “At a common-sense level, it seems plausible that a person
solves such problems by, first, translating the problem sentences into algebraic
equations and, second, solving the equations.” They go on to quote a 1929 text-
book recommending this approach (Hawkes, Luby, & Touton, 1929). Modern text-
books also recommend this approach and typically present story problems as chal-
lenge problems and applications in the back of problem-solving sections (Nathan,
Long, et al., 2002). Thus, a plausible source for teachers’ belief in the difficulty of
story problems over equations is the idea that equations are needed to solve story
problems. An algebra teacher performing the problem difficulty ranking task de-
scribed in Nathan and Koedinger (2000a) made the following reference to the
translate-and-solve strategy (the numbers 1–6 refer to sample problems teachers
were given; Table 1 shows these sample problems):

“1 [the arithmetic equation] would be a very familiar problem … Same for 4
[the algebra equation] … 3 [the arithmetic story] and 6 [the algebra story]
add context … Students would probably write 1 or 4 [equations] from any of
the others before proceeding.”

STORY PROBLEMS CAN BE EASIER

Some studies have identified circumstances where story problems are easier to
solve than equations. Carraher, Carraher, & Schliemann (1987) found that
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d. Translation to an algebra equation, which is then solved by the informal, unwind

strategy.

e. A rare translation of a result-unknown story to an equation.

FIGURE 2 Examples of successful strategies used by students: (a) guess-and-test, (b) un-
wind, (c) translate to algebra and solve algebraically, (d) translate to algebra and solve by un-
wind, (e) translate to algebra and solve by arithmetic.

a. The normative strategy: Translate to algebra and solve algebraically

b. The guess-and-test strategy.

c. The unwind strategy.



Brazilian third graders were much more successful solving story problems (e.g.,
“Each pencil costs $.03. I want 40 pencils. How much do I have to pay?”) than
solving matched problems presented symbolically (e.g., 3 × 40). Baranes, Perry,
and Stigler (1989) used the same materials with U.S. third graders. U.S. children
had higher overall success than the Brazilian children and, unlike the Brazilian
children, did not perform better in general on story problems than on symbolic
problems. However, Baranes and colleagues (1989) demonstrated specific condi-
tions under which the U.S. children did perform better on story problems than on
symbolic ones, namely, money contexts and numbers involving multiples of 25,
corresponding to the familiar value of a quarter of a dollar.

If story problems are sometimes easier as the Carraher et al. (1987) and Baranes
et al. (1989) results suggest, what is it about the story problem representation that
can enhance student performance? Baranes and colleagues (1989) hypothesized
that the situational context of story problems can make them easier than equivalent
symbolic problems and suggested that the problem situation activates real-world
knowledge (“culturally constituted systems of quantification,” p. 316) that aids
students in arriving at a correct solution.

Such an advantage of stories over symbolic forms can be explained within the
solution phase of the problem-solving framework presented in Figure 1. Story
problems can be easier when stories elicit different, more effective solution strate-
gies than those elicited by equations. Past studies have demonstrated that different
strategies can be elicited even by small variations in phrasing of the same story. For
example, Hudson (1983) found that nursery school children were 17% correct on a
standard story phrasing, “There are 5 birds and 3 worms. How many more birds are
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TABLE 1
Six Problem Categories Illustrating Two Difficulty Factors: Representation

and Unknown-Position

Story Problem Word Equation Symbolic Equation

Result—unknown
When Ted got home from his waiter job, he

took the $81.90 he earned that day and
subtracted the $66.00 he received in tips.
Then he divided the remaining money by
the 6 hr he worked and found his hourly
wage. How much does Ted make per hour?

Starting with 81.9, if I
subtract 66 and then
divide by 6, I get a
number. What is it?

Solve for x:
(81.90 – 66)/6 = x

Start—unknown
When Ted got home from his waiter job, he

multiplied his hourly wage by the 6 hr he
worked that day. Then he added the $66.00
he made in tips and found he had earned
$81.90. How much does Ted make per hour?

Starting with some
number, if I multiply it
by 6 and then add 66, I
get 81.9. What number
did I start with?

Solve for x:
x × 6 + 66 = 81.90



there than worms?” However, performance increased to an impressive 83% when
the story is phrased as, “There are 5 birds and 3 worms. How many birds don’t get a
worm?” The latter phrasing elicits a match-and-count strategy that is more accessi-
ble for novice learners than the more sophisticated subtraction strategy elicited by
the former, more standard phrasing.

The notion of a situation model (Kintsch & Greeno, 1985; Nathan et al., 1992)
provides a theoretical account of how story problems described in one way can
elicit different strategies than do equations or story problems described in other
ways. In this account, problem solvers comprehend the text of a story problem by
constructing a model-based representation of actors and actions in the story. Dif-
ferences in the stories tend to produce differences in the situation models, which in
turn can influence the selection and execution of alternative solution strategies. By
this account, it is the differences in these strategies at the solution phase (see Figure
1) that ultimately accounts for differences in performance. For instance, Nunes,
Schliemann, and Carraher (1993) found that everyday problems were more likely
to evoke oral solution strategies whereas symbolic problems evoked less effective
written arithmetic strategies.

Process model developers of story problem solving (e.g., Bobrow, 1968;
Cummins et al., 1988; Mayer, 1982b) have been careful to differentiate compre-
hension versus solution components of story problem solving. However, readers of
the literature might be left with the impression that equation solving involves only
a solution phase; in other words, that comprehension is not necessary. Although it
is tempting to think of comprehension as restricted to the processing of natural lan-
guage, clearly other external forms, such as equations, charts, and diagrams (cf.
Larkin & Simon, 1987), must be understood or comprehended to be used effec-
tively to facilitate reasoning. The lack of research on student comprehension of
number sentences or equations may result from a belief that such processing is
transparent or trivial for problem solvers at the algebra level. Regarding equations
such as (81.90 – 66)/6 = x and x × 6 + 66 = 81.90 in Table 2, an algebra teacher
commented that these could be solved “without thinking.”

HYPOTHESES AND EXPERIMENTAL DESIGN

The two studies presented here are the first we know of that test the common belief
that algebra learners have greater difficulty with story problems than matched
equations.1 Table 1 shows examples of the main factors manipulated in these stud-
ies. In addition to the main contrast between story problems and equations (first

136 KOEDINGER

1Recent reviews of mathematics learning research (Kilpatrick, Swafford, & Findell, 2001), story
problem research (Reed, 1998), and algebra research (Bednarz, Kieran, & Lee, 1996; Kieran, 1992) do
not reference any such studies.



and last columns in Table 1), we added an intermediate problem representation we
refer to as word problems or word equations (middle column in Table 1). We in-
cluded word equations to isolate effects of situational knowledge from effects of
differences in language comprehension demands between verbal and symbolic
forms. If stories cue useful situational knowledge, then we should find students
making fewer errors on story problems than on both word and symbolic equations.
If students’ relevant symbolic comprehension skills lag behind their relevant ver-
bal comprehension skills, then we should find them making more errors on sym-
bolic equations than on either of the verbal forms.

Our goal was to explore representation effects for students at the transition
from arithmetic to algebraic competence—a domain referred to as “early alge-
bra” (cf. Carpenter & Levi, 1999; Kaput, in press). Thus, we included both rela-
tively complex arithmetic problems (first row in Table 1) and relatively simple
algebra problems (second row in Table 1). In the arithmetic problems, the prob-
lem unknown is the result of the process or sequence of operators described.
These result-unknown problems are more complex than those used in prior re-
search on elementary arithmetic problem solving (Briars & Larkin, 1984; Car-
penter & Moser, 1984; Hiebert, 1982; Riley & Greeno, 1988). These problems
involve two arithmetic operators (e.g., multiplication and addition) rather than
one, decimals rather than only whole numbers, and more advanced symbolic no-
tation such as parentheses and equations with a variable on the right side (e.g.,
[81.90 – 66]/6 = x). The relatively simple algebra problems we used are two-op-
erator start-unknowns, that is, problems where the unknown is at the start of the
arithmetic process described.
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TABLE 2
Examples of the Four Cover Stories Used

Story Problem Cover Stories

Donut Lottery Waiter Basketball

After buying donuts at
Wholey Donuts, Laura
multiplies the 7 donuts
she bought by their
price of $0.37 per
donut. Then she adds
the $0.22 charge for
the box they came in
and gets the total
amount she paid.  How
much did she pay?

After hearing that Mom
won a lottery prize,
Bill took the $143.50
she won and subtracted
the $64.00 that Mom
kept for herself. Then
he divided the
remaining money
among her 3 sons
giving each the same
amount. How much did
each son get?

When Ted got home from
his waiter job, he
multiplied his wage of
$2.65 per hour by the 6
hr he worked that day.
Then he added the
$66.00 he made in tips
and found how much
he earned. How much
did Ted earn that day?

After buying a basketball
with his daughters, Mr.
Jordan took the price of
the ball, $68.36, and
subtracted the $25 he
contributed. Then he
divided the rest by 4 to
find out what each
daughter paid. How
much did each
daughter pay?



These problems are not meant to be representative of all kinds of algebraic
thinking or even all kinds of algebraic problem solving. As others have well
noted (cf. Carpenter & Levi, 1999; Kaput, in press), algebraic thinking involves
more than problem solving and includes study of functional relations,
covariation, graph comprehension, mathematical modeling and symbolization,
and pattern generalization. Even within the smaller area of algebraic problem
solving, there is a large variety of problems. Others have explored classes of al-
gebra problems more difficult than the ones used, for instance, problems where
the unknown is referenced more than once and possibly on both sides of the
equal sign, such as 5.8x – 25 = 5.5x (e.g., Bednarz & Janvier, 1996; Kieran,
1992; Koedinger, Alibali, & Nathan, submitted). Still others have begun to ex-
plore simpler classes of problems that may draw out algebraic thinking in ele-
mentary students (e.g., Carpenter & Levi, 1999; Carraher, Schliemann, &
Brizuela, 2000).

Our review of the literature on story problem solving leads us to consider three
competing hypotheses regarding the effects of problem representation on quantita-
tive problem solving at the early algebra level. The symbolic facilitation hypothe-
sis is consistent with the common belief that equations should be easier than
matched story problems because difficult English-language comprehension de-
mands are avoided (Cummins et al., 1988) and because the solution step of trans-
lating the problem statement to an equation is eliminated (Paige & Simon, 1966).
The situation facilitation hypothesis follows from the idea that story representa-
tions can cue knowledge that facilitates effective strategy selection and execution
(cf. Baranes et al., 1989; Carraher et al., 1987). Note that the four cover stories we
used, shown in Table 2, all involve money quantities and familiar contexts for ju-
nior high age students. The situation facilitation hypothesis predicts that students
will make fewer errors on story problems than on situation-free word equations
and equations.

A third verbal facilitation hypothesis follows from the observation that al-
gebra equations are not transparently understood and that the equation compre-
hension skills of beginning algebra students may lag behind their existing Eng-
lish-language comprehension skills. The verbal facilitation hypothesis predicts
that students will make fewer errors on story and word equations than on more
abstract equations. The verbal facilitation claim is similar to the situational fa-
cilitation and the culturally bound results of Carraher et al. (1987) and Baranes
et al. (1989): In some cases, situational knowledge helps elementary students
perform better on story problems than on matched equations. For algebra stu-
dents, however, it is not simply situation knowledge that can make story prob-
lems easier. Rather, the increased demands on symbolic comprehension pre-
sented by equations lead to difficulties for algebra students who have by now
mostly mastered the English-comprehension knowledge needed for matched
verbally stated problems. The verbal facilitation hypothesis uniquely predicts
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that both word equations and story problems can be easier than matched
equations.2

In contrast with the idea that equations are transparently understood, a key point
of this article is to test the claim that comprehension of algebra equations is not
trivial for algebra learners and that, as a consequence, algebra story problems can
sometimes be easier to solve than matched equations. The verbal facilitation claim
directly contradicts the documented views of many teachers and education re-
searchers (Nathan & Koedinger, 2000a, 2000b) and cognitive scientists (e.g.,
Cummins et al., 1988; Geary, 1994) that algebra story problems are inherently
more difficult than matched equations. This claim also addresses a gap in past the-
oretical analyses of quantitative reasoning that have provided story comprehension
models (e.g., Bobrow, 1968; Cummins et al., 1988; Kintsch & Greeno, 1985; Na-
than, Kintsch, & Young, 1992) but have neglected equation comprehension. These
models did not address the possibility that the equation format may present greater
comprehension challenges for learners than analogous verbal forms (cf. Kirshner,
1989; Sleeman, 1984).

DIFFICULTY FACTORS ASSESSMENTS:
STUDIES 1 AND 2

We investigated the symbolic, situation, and verbal facilitation hypotheses in two
studies. In both studies, students were asked to solve problems selected from a
multidimensional space of problems systematically generated by crossing factors
expected to influence the degree of problem difficulty. In addition to the problem
representation and unknown position factors shown in Table 1, we also manipu-
lated the type of numbers involved (whole numbers vs. positive decimals) and the
final arithmetic that problems required (multiplication and addition vs. subtraction
and division). We refer to this methodology as Difficulty Factors Assessment
(DFA) (Heffernan & Koedinger, 1998; Koedinger & MacLaren, 2002; Koedinger
& Tabachneck, 1995; Verzoni & Koedinger, 1997) and the two studies described
here as DFA1 and DFA2.

Methods for DFA1 and DFA2

Participants. Seventy-six students from an urban high school participated in
DFA1. Of these students, 58 were enrolled in one of three mainstream Algebra 1
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classes, and 18 were ninth graders enrolled in a geometry class who had taken Al-
gebra 1 in eighth grade. Four teachers taught the classes. The DFA2 participants
were 171 students sampled from 24 classrooms at three urban high schools. All
students were in a first-year Algebra 1 course. Twelve teachers taught the 24 class-
room sections.

Form design. Ninety-six problems were created using 4 cover stories that
systematically varied 4 difficulty factors: 3 levels of problem presentation (story,
word equation, and symbol equation) × 2 levels of unknown positions (result vs.
start) × 2 number types (whole vs. decimal) × 2 final arithmetic types (multiplica-
tion and addition vs. subtraction and division). Table 3 shows the cross table for
these factors; each cell is a different problem. Problems in the same column have a
common underlying mathematical structure, as indicated in the Base Equation
row. For instance, all integer Donut problems (fourth column of Table 3) are based
on the equation 4 × 25 + 10 = 110. The answer for each problem is one of these
bold numbers. When the final arithmetic is multiply–add (see ×, + in the third col-
umn), the answer is the last number (e.g., 110); when it is subtract–divide (–, /), the
answer is the first number (e.g., 4). The unknown position (second column), as de-
scribed previously, determines whether the unknown is the result or the start of the
arithmetic operations described in the problem. The appearance to students of the
result-unknown, subtract–divide problems (e.g., [110 – 10] / 25 = x) and start-un-
known, multiply–add problems (e.g., [x – 10] / 25 = 4) is the reverse of that shown
in the base equation form.

The 96 problems were distributed onto 16 forms with 8 problems on each form.
We limited the number of items per form because prior testing revealed that 8 prob-
lems could be reasonably completed in less than half a class period (18 min). This
decision reflected teachers’ recommendations for reasonable quiz duration and for
use of class time relative to the demands of the required curriculum.

Placement of problems on forms met the following constraints. Each form in-
cluded two story result-unknowns, two story start-unknowns, one word equation
result-unknown, one word equation start-unknown, one equation result-unknown,
and one equation start-unknown. Each form had one problem from a particular
base equation (one from each column in Table 3) such that no numbers or answers
were repeated on any form. The four story problems on every form had either all
integer number types or all decimal number types. The four other problems had the
opposite number types. The forms also were designed to counterbalance problem
order, because prior testing revealed that student performance tended to decline on
problems near the end of the test.

Each form had twice as many story problems (4) as word equations (2) or sym-
bol equations (2). The 32 story problems were used twice, once on eight forms in
which the story problems came first and again on eight forms in which the story
problems came last (in reverse order). The order of the word equations and equa-
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tions was also counterbalanced. The word equation and equation problems on the
reversed forms were identical in their difficulty factor composition to their coun-
terparts on the normal forms (i.e., each such pair had the same unknown position,
number type, and final arithmetic), but differed in the base equation.

The form designs of DFA1 and DFA2 were identical with one exception. The
base equation for the decimal Donut problems was changed on DFA2 from 7 × .37
+ .22 = 2.81 to .37 × 7 + .22 = 2.81 so that, like all the other decimal-base equa-
tions, the answer to the unknown is always a decimal (e.g., .37 or 2.81) and not a
whole number (e.g., 7).

Procedure. The quiz forms were given in class during a test day. Students
were given 18 min to work on the quiz and were instructed to show their work, put
a box around their final answer, and not to use calculators. We requested that stu-
dents not use calculators so that we could better see students’ thinking process in
the arithmetic steps. The procedures for DFA1 and DFA2 were identical.

Results for DFA1 and DFA2

DFA1 results. We performed both an item analysis and subject analysis to
assess whether the results generalize across both the item and student populations
(cf. Clark, 1973). For the item analysis, we performed a three-factor ANOVA with
items as the random effect and the three difficulty factors (representation, un-
known position, and number type) as the fixed effects.3

We found evidence for main effects of all three factors. Students (n = 76) per-
formed better on story problems (66%) and word equations (62%) than on equa-
tions (43%; F[2, 108] = 11.5, p < .001); better on result-unknown problems (66%)
than on start-unknown problems (52%; F[1, 108] = 10.7, p < .002); and better on
whole-number problems (72%) than on decimal-number problems (46%; F[1,
108] = 44, p < .001). A Scheffe’s S test post hoc showed a significant difference be-
tween story problems and equations (p < .001) and word equations and equations
(p < .01), but not between story problems and word equations (p = .80). None of the
interactions was statistically significant.

These results contradict the symbolic facilitation hypothesis because story
problems are not harder than equations. The results contradict the situation facili-
tation hypothesis because story problems are not easier than word equations. The
results support the verbal facilitation hypothesis because word equations are sub-
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3Because the dependent variable is a proportion (students solving the item correctly divided by the
number of students who saw the item), we used a logit transformation as recommended by Cohen &
Cohen (1975, pp. 254–259): .5 × ln(p / (1–p)) where p = 0 is replaced by p = 1/(2N) and p = 1 by p =
1–1/(2N) and N is the number of students who see the item. Note, analyses using the proportions with-
out transformation yield quite similar results and do not move any p values across the 0.05 threshold.



stantially easier than equations. In other words, the difference between verbal and
symbolic representation, and not the difference between situational context and
abstract description, accounts for the observed performance differences.

Figure 3 illustrates the main effects of the three difficulty factors: representa-
tion, unknown position, and number type. As is evident, the effect of representa-
tion is primarily a consequence of the difference between the symbolic equation
representation and the two forms of verbal representation, story and word equa-
tions. There may be a difference between story and word equation representations
for the decimal problems (see the graph on the right in Figure 3); however, the in-
teraction between representation and number type is not statistically significant
(F[2, 108] = .82, p = .44).

To confirm that the main effects of the three difficulty factors generalize not
only across items but also across students (cf. Clark, 1972), we performed three
separate one-factor repeated measure ANOVAs for each of the three difficulty fac-
tors: representation, unknown position, and number type. Unlike the item analysis
above, the random effect here is students rather than items. Consistent with the
item analysis, the repeated measures student analyses revealed significant main ef-
fects of each factor. Story and word problems are significantly easier than equa-
tions (F[2, 150] = 8.35, p < .001). Result-unknowns are significantly easier than
start-unknowns (F[1, 75] = 19.8, p < .001). Whole-number problems are signifi-
cantly easier than decimal-number problems (F[1,75] = 42.3, p < .001).

DFA2 results. The results of DFA2 replicate the major findings of DFA1 for
the main effects of representation, unknown position, and number type (see Figure
4). Students (n = 171) were 67% correct on the whole number problems and only
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FIGURE 3 Proportion correct of high school algebra students in DFA1 (n = 76). The graphs
show the effects of the three difficulty factors: representation, unknown position, and number
type. The error bars display standard errors around the item means.



54% correct on the decimal problems (F[1, 116] = 22, p < .001). They were more
often correct on result-unknown problems than start-unknown problems (72% vs.
49%; F[1, 116] = 49, p < .001). As in DFA1, students performed best on story
problems (70%), next best on word equations (61%), and substantially worse on
equations (42%; F[2, 116] = 22, p < .001). Again, the big difference is between the
word equations and equations (p < .001 by a post hoc Scheffe’s S test). Like DFA1,
the difference between story problems and word equations is not statistically sig-
nificant (p = .09 by a post hoc Scheffe’s S test). However unlike DFA1, there is a
significant interaction between representation and number type (F[2, 116] = 3.7, p
= .03), as illustrated in Figure 4. When the number type is whole number, there is
no difference between story and word equations (72% vs. 73%). An advantage for
story problems over word equations (68% vs. 48%, p < 01 by a post hoc contrast
test) appears only when the number type is decimal.

As seen in Figure 3, this interaction was apparent in DFA1 although it was not sta-
tistically significant. However, to further evaluate the situation facilitation hypothe-
sis, we tested whether the advantage of story over word on decimal problems gener-
alized across the two studies. The difference between the decimal story problems
and decimal word equations is statistically reliable when the data from the two stud-
ies are combined (64% vs. 47%, p < .01 by a post hoc Scheffe’s S test including only
thedecimal items).This result leadsus toconclude that situation facilitationdoesex-
ist but its scope is limited. In these data, problem-solving performance is only facili-
tated by the richer story contexts, above and beyond the more general verbal advan-
tage, when decimal numbers are used. An explanation for this effect is proposed
when we report findings of the strategy and error analyses in the next section.
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FIGURE 4 Proportion correct of high school algebra students in DFA2 (n = 171). The graphs
show the effects of the three difficulty factors: representation, unknown position, and number
type. The error bars display standard errors around the item means.



As in the student analysis in DFA1, a one-factor repeated measure ANOVA
was conducted for each of the three difficulty factors with student as the random
factor. The generalization of these effects across students was confirmed. Repre-
sentation, unknown position, and number difficulty had statistically significant
effects: F(2, 340) = 37, p <.001; F(1, 170) = 137, p < .001; and F(1,170) = 20, p
< .001, respectively.

STRATEGY AND ERROR ANALYSES OF LEARNERS

To provide a cognitive process explanation of our results, we performed a detailed
strategy and error analysis of student solution traces. This method serves as a qual-
itative analysis of students’ written protocols. This analysis and the coding catego-
ries used were strongly influenced by cognitive modeling work within the ACT-R
theory and production system (Anderson, 1993). The details of our ACT-R model
of early algebra problem solving are beyond the scope of this article. We refer the
interested reader to Koedinger & MacLaren (2002).

Qualitative Strategy Analysis—Stories Can Be Solved
Without Equations

The results of DFA1 and DFA2 contradict the common belief in the ubiquitous dif-
ficulty of story problems as well as the predictions of teachers and education re-
searchers (Nathan & Koedinger, 2000a) and cognitive researchers (Cummins et
al., 1988). A common argument that supports this belief states that story problems
are more difficult than matched equations because students must translate the story
into an equation to solve it (Bobrow, 1968; Hawkes et al., 1929; Paige & Simon,
1966). Indeed, we observed examples of this normative translation strategy in stu-
dent solutions (see Figure 2a). However, we found many students using a variety of
informal strategies as well (cf. Hall et al., 1989; Katz, Friedman, Bennett, &
Berger, 1996; Kieran, 1992; Resnick, 1987; Tabachneck, Koedinger, & Nathan,
1994). By informal we mean that students do not rely on the use of mathematical
(symbolic) formalisms, such as equations. We also mean that these strategies and
representations are not acquired typically through formal classroom instruction.
Figures 2b through 2d show examples of these informal strategies as observed in
students’ written solutions.

Figure 2b shows the application of the guess-and-test strategy to a start-un-
known word problem. In this strategy, students guess at the unknown value and
then follow the arithmetic operators as described in the problem. They compare the
outcome with the desired result from the problem statement; if the outcome differs,
they try again. In the solution trace shown in Figure 2b, we do not know for sure
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where the student started writing—perhaps with the scribbled-out work on the
right—but it is plausible that her first guess at “some number” was 2. To the right
and somewhat below the question mark at the end of the problem appears her writ-
ten arithmetic applying the given operations multiply by .37 and add .22 to her
guess of 2. The result is .96, which she sees is different than the desired result of
2.81and perhaps also, that it is substantially lower than 2.81. It appears her next
guess is 5, which yields a result (2.07) that is closer but still too small. She aban-
dons a guess of 6, perhaps because she realizes that 2.07 is more than .37 short of
2.81. She tries 7, which correctly yields 2.81, and then writes, “The number is 7.”
The guess-and-test strategy is not special to early algebra students, but also has
been observed in the algebraic problem solving of college students (e.g., Hall et al.,
1989; Katz et al., 1996; Tabachneck et al., 1994).

Figure 2c illustrates a second informal strategy for early algebra problem solv-
ing we call the unwind strategy. To find the unknown start value, the student re-
verses the process described in the problem. The student addresses the last opera-
tion first and inverts each operation to work backward to obtain the start value. In
Figure 2c, the problem describes two arithmetic operations, subtract 64 and divide
by 3, in that order. The student starts (on the right) with the result value of 26.50
and multiplies it by 3; this inverts the division by 3 that was used to get to this
value. Next, the student takes the intermediate result, 79.50, and adds 64.00, which
inverts the subtraction by 64 described in the problem. This addition yields the un-
known start value of 143.50.

Although the informal guess-and-test strategy appears to be relatively ineffi-
cient compared with the formal translation strategy (compare the amount of writ-
ing in Figure 2b with 2a), the informal unwind strategy actually results in less writ-
ten work than the translation strategy (compare 2c and 2a). In unwind, students go
directly to the column arithmetic operations (see 2c) that also appear in translation
solutions (see the column subtraction and division in 2a), but they do so mentally
and save the effort of writing equations. (For other examples of such mental alge-
bra among more expert problem solvers, see Hall et al., 1989; Tabachneck et al.,
1994). The next section addresses whether students use informal strategies fre-
quently and effectively.

Quantitative Strategy Analysis—Words Elicit More Effective
Strategies

We coded student solutions for the strategies apparent in their written solutions for
DFA1 and DFA2. Our strategy analysis focuses on the early algebra start-unknown
problems (shown in Figures 2a–2d). We observed little variability in students’
strategies on the result-unknown problems. Although some students translated
verbal result-unknown problems into equations (see Figure 2e), in the majority of
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solutions students went directly to the arithmetic. Typical solution traces included
only arithmetic work, as illustrated in the lower left corner of Figure 2e (i.e., all but
the three equations).

Table 4 shows the proportion of strategy use on start-unknown problems for the
three representations. Different representations elicited different patterns of strat-
egy usage. Story problems elicited the unwind strategy most often (50% of the
time). Story problems seldom elicited the symbolic translation strategy typically
associated with algebra (only 5% of the time). Situationless word equations tended
to elicit either the guess-and-test (23% of the time) or unwind (22%) strategy.
Equations resulted in no response 32% of the time, more than twice as often as the
other representations. When students did respond, they tended to stay within the
mathematical formalism and apply symbol manipulation methods (22%). Even on
equations, students used the informal guess-and-test (14%) and unwind (13%)
strategies fairly often. In fact, as Figure 2d illustrates, sometimes students trans-
lated a verbal problem to an equation but then solved the equation subproblem in-
formally, in this case, using the unwind strategy.

Story problems may elicit more use of the unwind strategy than word equations be-
cause of their more episodic or situated nature (cf. Hall et al., 1989). Retrieving
real-world knowledge, for example, about a box of donuts (see Figure 1) may support
students in making the whole-part inference (cf. Greeno, 1983; Koedinger & Anderson,
1990) that subtracting the box cost from the total cost gets one closer to the solution.

We also saw that word equations elicited more unwind strategy usage than
equations. Although word equations are situationless, we did use words such as
starting with, and then, and I get that describe someone performing an active pro-
cedure. Even the mathematical operators were described as actions (multiply and
add) instead of as relations (times and plus). Perhaps this active description made it
easier for students to think of reversing the performance of the procedure de-
scribed. We suggest future research that tests this action facilitation hypothesis
and contrasts our current procedural word equations with relational word equa-
tions such as “some number times .37 plus .22 equals 2.81” (see Figure 1 for the
analogous procedural word equation). Action facilitation predicts better student

STORY PROBLEMS 147

TABLE 4
Solution Strategies (Percentages) Employed by Solvers as a Function of

Problem Representation for Start-Unknown Problems

Problem
Representation Unwind

Guess and
Test

Symbol
Manipulation

No
Response

Answer
Only Unknown Total

Story 50 7 5 12 18 8 100
Word equation 22 23 11 13 19 12 100
Equation 13 14 22 32 11 8 100



performance on procedural than relational word equations whereas verbal facilita-
tion predicts equal performance (with both better than equations).

In addition to investigating differences in strategy selection, we also analyzed
the effectiveness of these strategies. Table 5 shows effectiveness statistics (percent
correct) for the unwind, guess-and-test, and symbol manipulation strategies on
start-unknown problems in all three representations. The informal strategies, un-
wind and guess-and-test, showed a higher likelihood of success (69% and 71%, re-
spectively) than did use of the symbol manipulation approach (51%). It appears
that one reason these algebra students did better on story and word problems than
on equations is that they selected more effective strategies more often. However,
this effect could result from students’ choosing informal strategies on easier prob-
lems. Use of a no-choice strategy selection paradigm (Siegler & Lemaire, 1997) is
a better way to test the efficacy of these strategies. Nhouyvanisvong (1999) used
this approach to compare equation solving and guess-and-test performance on
story problems normatively solved using a system of two equations or inequalities.
Surprisingly, he found students instructed to use guess-and-test were more suc-
cessful than those instructed to use equation solving.

Error Analysis—Comprehending Equations Is Harder Than
Comprehending Words

Our analysis of student strategies, particularly the differential use of informal strat-
egies, provides one reason why story and word problems can be easier than
matched equations. Our analysis of student errors provides a second reason. Un-
like the first- and second-grade students in Cummins et al. (1988), who had yet to
acquire critical English-language comprehension skills, high school algebra stu-
dents had more developed English comprehension skills, but were still struggling
to acquire critical algebra-language comprehension skills.
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TABLE 5
Likelihood That Strategies Used by Students on Start-Unknown Problems

Leads to a Correct Answer

Strategies No. Correct/No. Attempted Likelihood Strategy Leads to Correct Answer

Unwind 232/335 69%
Guess and test 89/125 71%
Symbol manipulation 56/109 51%
Answer only 90/161 56%
Unknown 38/89 43%
Total with response 505/819 62%
No response 0/169 0%
Total 505/988 51%



Categorization of student errors into three broad categories—(a) no response, (b)
arithmeticerror, and (c)otherconceptual errors—provides insight intohowstudents
process story problems and equations differently. Students’solutions were coded as
noresponse ifnothingwaswrittendownfor thatproblem.Systematicoccurrencesof
no-response errors suggested student difficulties in comprehending the external
problem representation. Our counterbalancing for the order of problem presentation
allowed us to rule out student fatigue or time constraints. Student solutions were
coded as arithmetic error if a mistake was made in performing an arithmetic opera-
tion but the solution was otherwise correct (e.g., Figure 5f). Arithmetic errors indi-
catedcorrectcomprehensionand, in thecaseofstart-unknowns,correct formalor in-
formal algebraic reasoning. Apart from some rare (19 errors out of 1,976 solutions)
nonarithmetic slips, such as incorrectly copying a digit from the problem statement,
all other errors were coded as conceptual errors. Examples of a variety of different
conceptual errors are shown in Figures 5a through 5e.

Figure 6a shows the proportions of the error types for the three levels of the rep-
resentation factor: story, word equation, or equation. The key difference between
equations and the two verbal representations (story, word equation) is accounted
for primarily by no response errors (26% = 127/492 vs. 8% = 119/1,465). No-re-
sponse errors imply difficulty comprehending the external problem representation.
These data suggest that students in these samples were particularly challenged by
the demands of comprehending the symbolic algebra representation. The language
of symbolic algebra presents new demands that are not common in English or in
the simpler symbolic arithmetic language of students’ past experience (e.g.,
one-operator number sentences, such as 6 – 2 = ?, used in Cummins et al., 1988).
The algebraic language adds new lexical items, such as x, *, /, (, and new syntactic
and semantic rules, such as identifying sides of an equation, interpreting the equal
sign as a relation rather than as an operation, order of arguments, and order of oper-
ators. When faced with an equation to solve, students lacking aspects of algebraic
comprehension knowledge may give up before writing anything down.

Further evidence of students’difficulties with the “foreign language of algebra”
comes from students’ conceptual errors. As shown in Figure 5a, students make
more conceptual errors on equations (28% = 103/365) than on word equations
(23% = 103/450) and particularly story problems (16% = 144/896).4 Figures 6a
and 6b show examples of conceptual errors on equations. Figure 6a shows an or-
der-of-operations error whereby the student performs the addition on the left-hand
side (.37 + .22), which violates the operator precedence rule that multiplication
should precede addition. We found a substantial proportion of order-of-operation
errors on equations (4.9% = 24/492), while order-of-operations errors on verbal
problems were extremely rare (0.3% = 4 /1,468).
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— solutions with no response errors are not counted in the denominator.



d. Inverse operator error. Student should have added .10 rather than

subtracting .10.

e. Incomplete guess-and-test error. Student gives up before finding a guess that works.

f. Decimal alignment arithmetic error. Student adds 66 to .90 aligning flush right rather

than aligning place values or the decimal point.

FIGURE 5 Examples of errors made by students: (a) order of operations, (b) algebra manipu-
lation, (c) argument order, (d) inverse operator, (e) incomplete guess-and-test, (f) decimal align-
ment arithmetic error.

a. Order of operations error. Student inappropriately adds .37 and .22.

b. Algebra manipulation errors. Student subtracts from both sides of the plus sign rather

than both sides of the equal sign.

c. Argument order error . Student treats "subtract 66" (x – 66) as if it were "subtract from

66" (66 – x).



Figure 6b shows two examples of algebra manipulation errors. This student ap-
pears to have some partial knowledge of equation solving, namely, that you need to
get rid of numbers by performing the same operation to both sides of the equation.
The student, however, operated on both sides of the plus sign rather than both sides
of the equal sign. These errors indicate a lack of comprehension of the quantitative
structure expressed in the given equations. Such errors appear less frequently on
word and story problems, indicating that comprehension of the quantitative struc-
ture is easier for students when that structure is expressed in English words rather
than in algebraic symbols.
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FIGURE 6 Frequency of broad error categories helps to explain the causes of the verbal and
situation facilitation effects observed: (a) proportions of correct and incorrect responses for
story, word equations, and equations. A verbal facilitation effect is indicated particularly in the
fewer no-response errors in the story and word equation problems;(b) proportions of correct and
incorrect responses for story versus word equations crossed with whole versus decimal number
problems. A situation facilitation effect is indicated in decimal problems with fewer conceptual
and arithmetic errors on story decimal problems than word equation decimal problems.



Explaining situation facilitation. Algebraic language acquisition difficul-
ties, such as comprehension and conceptualization of the underlying quantitative
relations, account for much of the error difference between equations and verbal
problems. These differences are consistent with the verbal facilitation hypothesis.
However, we also observed a smaller situation facilitation effect whereby story
performance was better than word equation performance under certain condi-
tions—namely when dealing with decimal numbers. This interaction was statisti-
cally reliable in DFA2, but the same trend also was apparent in the smaller DFA1
data set. Figure 6b shows the proportions of the three error types for the representa-
tion and number-type factors together. The interaction between representation and
number type is caused largely by fewer arithmetic errors on decimal story prob-
lems (12% = 46/389 on decimal vs. 5% = 17/363 on whole) than for word equa-
tions or equations (23% = 33/144 on decimal vs. 2% = 4/203 on whole).5 Misalign-
ment of place values in decimal arithmetic (see Figure 5f) was a common error on
situationless word and equation problems. In contrast, this error was rare on story
problems. The money context of the story problems appears to have helped stu-
dents correctly add (or subtract) dollars to dollars and cents to cents. In contrast,
without the situational context (in word equations and equations), students would
sometimes, in effect, add dollars to cents.

Situation-induced strategy differences also appear to contribute to students’
somewhat better performance on story problems than on word equations. As we
saw from the strategy analysis, students were more likely to use the unwind strat-
egy on story problems (50%) than on word equations (22%) or equations (13%).
The unwind strategy may be less susceptible to conceptual errors than the
guess-and-test strategy, which was used more frequently on word equations. A
particular weakness of the guess-and-test strategy is the need to iterate through
guesses until a value is found that satisfies the problem constraints. As illustrated
in Figure 6e, a common conceptual error in applying guess-and-test is to give up
before a satisfactory value is found. Guess-and-test is more difficult when the an-
swer is a decimal rather than a whole number because this strategy takes more iter-
ations in general to converge on the solution. This weakness of guess-and-test and
the strategy’s greater relative use on word equations than on story problems may
account for the greater number of conceptual errors on decimal word equations
than on decimal story problems (Figure 6b).
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DISCUSSION

Assessing the Symbolic, Situation, and Verbal Facilitation
Hypotheses

In the introduction, we contrasted three hypotheses regarding the effects of different
problem representations on algebra problem solving. The symbolic facilitation hy-
pothesis predicts that story problems are more difficult than matched equations be-
cause equations are more parsimonious and their comprehension more transparent.
Our results with high school students solving entry-level algebra problems in two
samplescontradict thisclaimandshow, instead, that symbolicproblemscanbemore
difficult for students, even after a year or more of formal algebra instruction.

Alternatively, the situation facilitation hypothesis follows from situated cogni-
tion research (Baranes et al., 1989; Brown, Collins, & Duguid, 1989; Carraher et
al., 1987; Nunes et al., 1993) and suggests that problem situations facilitate student
problem solving by contextualizing the quantitative relations. The prediction of
the situation facilitation hypothesis, that story problems are easier than both word
equations and equations, is not fully consistent with our results. Although students
in DFA1 and DFA2 did perform better on story problems than on equations, they
also performed better on word equations than on equations. Thus, it is not simply
the situated nature of story contexts that accounts for better performance.

The verbal facilitation hypothesis focuses not on the situated nature of story
problems per se but on their representation in familiar natural language. The hy-
pothesis follows from the idea that students, even after an algebra course, have had
greater experience with verbal descriptions of quantitative constraints than with al-
gebraic descriptions of quantitative constraints. Thus, it predicts that word equa-
tions, as well as story problems, will be easier than mathematically equivalent
equations. The prediction relies on two claims. First, students initially have more
reliable comprehension knowledge for verbal representations than symbolical
ones. Second, verbal representations better cue students’existing understanding of
quantitative constraints and, in turn, informal strategies or weak methods for con-
straint satisfaction, such as guess-and-test or working backwards. Early algebra
students appear better able to successfully use such strategies rather than the sym-
bol-mediated equation-solving strategy.

This second claim, that verbal representations help cue students’ knowledge, is
consistent with the assertion made by Nunes et al. (1993, p. 45) that “discrepant
performances can be explained in terms of the symbolic systems being used.” They
found evidence that the chosen symbolic system (e.g., formal vs. verbal or oral) de-
termines performance more than the given one. Students performed better on all
kinds of problems, whether abstract or situational, when they used informal oral
strategies than when they used formal written strategies. Our strategy analysis re-
vealed analogous results for older students and a different class of problems. In ad-
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dition to providing further evidence to support the explanation provided by Nunes
et al. (1993), our results extend that explanation. In our error analysis, we found ev-
idence that the given representation has direct effects on student performance be-
yond its indirect effects on influencing student strategy choice. More students
failed to comprehend given equation representations than given verbal representa-
tions, as indicated by a greater frequency of no-response and conceptual errors on
the former (as illustrated in Figure 6a).

Like Baranes et al. (1989), we did see some localized situational facilitation in
students’ performance on story problems. First, students used the unwind strategy
more often on story problems than on word equations or symbolic equations. Be-
cause this strategy is more reliable than equation manipulation and more efficient
than guess-and-test, students were less likely to make conceptual errors when solv-
ing decimal story problems. A second situational effect involves support for decimal
alignment in the context of a story problem. Students avoided adding dollars to cents
in the story context and thus made fewer arithmetic errors on problems involving
decimals in this context than in context-free word equations and equations.

One might interpret some educational innovations emphasizing story contexts
(e.g., Cognition and Technology Group at Vanderbilt, 1997; Koedinger, Anderson,
Hadley, & Mark, 1997), calls for mathematics reform (e.g., National Council of
Teachers of Mathematics, 2000), and situated cognition and ethnomathematical re-
search (e.g., Brown et al., 1989; Cognition and Technology Group at Vanderbilt,
1990; Greeno & MMAP Group, 1998; Roth, 1996) as suggesting that “authentic”
problem situations generally help students make sense of mathematics. In contrast,
our results are consistent with those of Baranes et al. (1989) that situational effects
are specific and knowledge related. Similarly, Nunes et al. (1993, p. 47) argued that
the differences they observed “cannot be explained only by social-interactional fac-
tors.” Indeed, as long as problems were presented in a story context, they found no
significant difference between performances in different social interaction settings,
whetheracustomer–vendorstreet interactionora teacher–pupil school interaction.

Situational effects are not panaceas for students’ mathematical understanding
and learning. Clearly, though, problem representations, including their embedding
and referent situations, have significant effects on how students think and learn.
Better understanding of these specific effects should yield better instruction.

Two reasons why story and word problems can be easier. Two key
reasons explain the surprising difficulty of symbolic equations relative to both
word and story problems. These two reasons correspond, respectively, to the solu-
tion and comprehension phases of problem solving illustrated in Figure 1. First,
students’ access to informal strategies for solving early algebra problems provides
an alternative to the logic that word problems must be more difficult because equa-
tions are needed to solve them. Our data, as well as that of others (cf. Hall et al.,
1989; Stern, 1997), demonstrates that solvers do not always use equations to solve
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story problems. Second, despite the apparent ease for experienced mathematicians
of solving symbolic expressions, the successful manipulation of symbols requires
extensive symbolic comprehension skills. These skills are acquired over time
through substantial learning. Early in the learning process, symbolic sentences are
like a foreign language—students must acquire the implicit processing knowledge
of equation syntax and semantics. Early algebra students’ weak symbolic compre-
hension skills contrast with their existing skills for comprehending and manipulat-
ing quantitative constraints written in English. When problems are presented in a
language students understand, students can draw on prior knowledge and intuitive
strategies to analyze and solve these problems despite lacking strong knowledge of
formal solution procedures.

One dramatic characterization of our results is that under certain circumstances
students can do as well on simple algebra problems as they do on arithmetic prob-
lems. This occurs when the algebra problems are presented verbally (59% and
60% correct on start-unknown stories in DFA1 and DFA2) and the arithmetic prob-
lems are presented symbolically (51% and 56% correct on result-unknown equa-
tions in DFA1 and DFA2). Although we have been critical of the sweeping claim
made by Cummins and colleagues (1988) that “students … continue to find word
problems … more difficult to solve than problems presented in symbolic format
(e.g., algebraic equations),” we agree on the importance of linguistic development.
However, we broaden the notion of linguistic forms to include mathematical sym-
bol sentences. Cummins emphasized that the difficulty in story problem solving is
not specific to the solution process, but is also in the comprehension process. “The
linguistic development view holds that certain word problems are difficult to solve
because they employ linguistic forms that do not readily map onto children’s exist-
ing conceptual knowledge structures.” (Cummins et al, 1988, p. 407). Our results
indicate that the difficulty in equation solving similarly is found not only in the so-
lution process, but also in the comprehension process. Algebra equations employ
linguistic forms that beginning algebra students have difficulty mapping onto ex-
isting conceptual knowledge structures.

Although our results are closer to those studies that have found advantages for
story problems over symbolic problems under some circumstances (Baranes et al,
1989; Carraher et al., 1987), our analysis of the underlying processes has important
differences. Like the situated cognition researchers, we found particular circum-
stances in which the problem situation facilitated performance (money and decimal
arithmetic). However, our design and error analysis focused not only on when and
why story problems might be easier, but also on when and why equations might be
harder.Thekey result here is that equationscanbemoredifficult tocomprehend than
analogous word problems, even though both forms have no situational context.
Kirshner (1989) and Sleeman (1984) have also highlighted the subtle complexities
of comprehending symbolic equations and Heffernan & Koedinger (1998) have
identified similar difficulties in the production of symbolic equations.
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Logical Task-Structure Versus Experience-Based Reasons
for Difficulty Differences

An important question regarding these results is whether difficulty factor differ-
ences are a logical consequence of the task structure or a consequence of biases in
experience as determined by cultural practices (e.g., presenting students with alge-
braic symbolism later, as in the United States, versus early, as in Russia and Singa-
pore). The cognitive modeling work we have done (Koedinger & MacLaren, 2002)
has led to the observation that some difficulty factors are a fixed consequence of
task structure, whereas others are experience based.

The greater difficulty of start-unknown problems over result-unknown prob-
lems is a logical consequence of differences in task structure. When students solve
a start-unknown problem, they must do everything they need to do to solve an oth-
erwise equivalent result-unknown problem (e.g., comprehend the problem state-
ment, perform arithmetic operations) in addition to dealing with the fact that the
arithmetic operations cannot be simply applied as described in the problem. Thus,
start-unknown problems are logically constrained to be at least as difficult as re-
sult-unknown problems.

In contrast, the difficulty difference between word problems and equations is
not logically constrained. Although there is some overlap in the knowledge re-
quired to solve word problems and equations (e.g., arithmetic and operator inver-
sion or guess-and-test skills), each problem category requires some knowledge
that the other does not. Word problems require knowledge for verbal comprehen-
sion not needed for equations, and equations require knowledge for comprehend-
ing symbolic notation not needed for word problems. Thus, the difficulty differ-
ence between these problem categories is not fixed but depends on students’
relative experience with verbal and symbolic representations.

The proportion of a student’s exposure to quantitative constraints in verbal versus
symbolic formmaydepend, in turn,oncultural factors.Given theprevalenceofnatu-
ral language for other communicative needs, early algebra students are likely to have
more reliable knowledge for comprehending verbal descriptions than symbolic
ones. Thus, students may tend to find comprehending word problems easier than
comprehending equations, at least initially. However, in an educational culture
wheresymbolicalgebra representationsareexperiencedearlier andmore frequently
by students, we would expect the difference to shrink over time. In contrast to the ap-
proach in traditional U.S. curricula of introducing start-unknown number sentences
usingboxesorblanks(e.g.,__+5=8) torepresentunknowns, students inothercoun-
tries (Russia, Singapore) are introduced to the use of letters (e.g., x + 5 = 8) to repre-
sent unknowns in the elementary grades (e.g., Singapore Ministry of Education,
1999). If our study was replicated in such countries, we expect that students would
not experience the kind of equation comprehension difficulties observed here and
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thus may show as good or better performance on symbolic equations relative to story
problems. Perhaps future cross-cultural research can test this prediction.

Instructional Implications

Some advantages and disadvantages of four alternative instructional strategies
might appear to follow from our results. First, to the extent that people can effec-
tively solve problems without symbolic equations, why are algebra equations and
equation-solving skills needed at all? One reason is that algebraic symbolism has
uses outside of problem solving, including efficiently communicating formulas
and facilitating theorem proving. Even within problem solving, equations may
well facilitate performance for more complex problem conditions (Koedinger et
al., submitted; Verzoni & Koedinger, 1997). Replacing algebra equations with al-
ternative representations is an intriguing idea (cf. Cheng, 1999; Koedinger &
Terao, 2002), but we do not advocate eliminating equations and equation solving
from the curriculum.

Because equation solving is so hard for students to learn and because it is impor-
tant, a second instructional strategy worth considering is a mastery-based approach
(Bloom, 1984) that focuses on equation-solving instruction in isolation. This strat-
egy targets the syntax of algebraic transformation rules and does not address alge-
braic symbolism as a representational language with semantics. Instruction that iso-
lates transformational rules may reduce cognitive load and thus facilitate learning
(Sweller, 1988). However, practicing procedures without an understanding of un-
derlyingprinciplesoften leads to fragileknowledge thatdoesnot transferwell (Judd,
1908; Katona, 1940). To be sure, students often make errors in equation solving that
clearly violate the underlying semantics (Figures 5a–5b; Payne & Squibb, 1990).

A third alternative takes a developmental view and suggests starting with in-
structional activities involving story problems, which are easier for students to
solve, and moving later to more abstract word equation problems and then to sym-
bolic equations. In this view, decomposing instruction to focus on difficult equa-
tion-solving skills is fine. However, such instruction should come after students
have learned the meaning of algebraic sentences, that is, after they have learned to
translate back and forth between English and algebra. This progressive formaliza-
tion sequencing (Romberg & de Lange, in press) is unlike many current textbooks
that teach equation solving before analogous story problem solving (Nathan et al.,
2002). Our theoretical analysis (Koedinger & MacLaren, 2002) and experiments
with simulated students (MacLaren & Koedinger, 2002) support the hypothesis
that developing students’ understanding of quantitative constraints in the verbal
representation should facilitate learning of the symbolic representation of quanti-
tative constraints.

The fourth instructional alternative advocates that students develop some
competence at encoding and representing constraints in verbal form prior
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to—and as the basis for—equation-solving instruction. Here, students’ under-
standing of verbal constraints is used as a bridge for understanding and manipu-
lating symbolic constraints. Activities and exercises should focus on translating
back and forth between verbal and symbolic representations. According to this
view, instruction should aid students in making explicit connections between
their existing verbal knowledge and the new symbolic knowledge they are learn-
ing. In this approach, instruction aims to help students to understand the mean-
ing of algebraic sentences and symbol-manipulation procedures by grounding
symbolic forms in students’ preexisting verbal comprehension and strategic
competence. Relevant grounding activities might include (a) matching equations
and equivalent word equations, (b) translating equations to story problems and
solving both, (c) solving story problems and summarizing both the story and the
solution in equations, and (d) making students aware of the algorithmic nature of
their intuitive verbal strategies and generalizing these procedures to include
symbolic formalisms. We have some indication that this approach is effective for
teaching sixth graders to solve story and word equations first informally and
then symbolically (Nathan & Koedinger, 2000c). We also have begun to experi-
mentally compare this approach to other approaches in extended interventions
with seventh- and eighth-grade students (Nathan, Stephens, Masarik, Alibali, &
Koedinger, 2002).

Grounding new representations to familiar representations has the potential to
promote reliable performance by facilitating meaning-making and self-monitoring
processes. For example, solution steps generated in the abstract equation represen-
tation can be checked against the results of reasoning with a concrete story repre-
sentation. Errors in use of the equation representation may be detected and fixed
through comparison with the analogous story solution. Further, steps in story solu-
tions can be used as examples to learn, via analogy, transformations in the equation
representation. Instruction that focuses on bridging permits use of fallback strate-
gies that can help students to acquire and debug new, more powerful abstract
knowledge.

Some prior studies have indicated the promise of bridging instruction in algebra
learning. Nathan et al. (1992) demonstrated that student learning of algebraic sym-
bolization for multiple-unknown problems (e.g., translating more complex story
problems into equations such as 12[t-2] + 8t = 76) was enhanced by encouraging
students to coordinate between a grounded representation, in this case an anima-
tion of the problem situation, and the abstract symbolic representation. Koedinger
and Anderson (1990) demonstrated that student learning of algebra symbolization
for simpler linear start-unknowns (e.g., translating story problems into expressions
such as 42x + 35) was enhanced by having students first solve story problems and
then use the emergent arithmetic procedure essentially to induce an algebraic ex-
pression. In more applied work, a key feature of the Cognitive Tutor Algebra cur-
riculum and software (Koedinger, Anderson, Hadley, & Mark, 1997) is to help stu-
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dents learn more abstract algebraic representations (e.g., symbols and graphs) by
bridging off existing knowledge in more grounded representations (e.g., situations,
words, and tables of values). Classroom field studies have demonstrated that Cog-
nitive Tutor Algebra results in dramatic improvements in student achievement rel-
ative to traditional algebra curricula (Koedinger et al., 1997). Brenner et al.(1997)
demonstrated the effectiveness of a similar approach that employed multiple repre-
sentations in supporting algebra learning.

CONCLUSION

Studies in a variety of domains have shown that “different presentation formats elicit
qualitatively different solution strategies” (Mayer, 1982a, p. 448) and can lead to
dramatically different performance (Kotovsky, Hayes, & Simon, 1985; Zhang &
Norman, 1994). We have identified two ways in which external representations can
changeperformance.First,performancemaychangebecauseoneexternal represen-
tation is more difficult to comprehend than another. Second, performance can
change because different external representations may be comprehended in differ-
ent ways and in turn cue different processing strategies.

We have found it useful to think of the process of learning formal representations
(e.g., algebra, vectors, chemical equations, etc.) as a kind of foreign-language learn-
ing. Students acquire some explicit knowledge of the grammar of algebra, such as
what a term or a factor is. However, it is likely that much of the knowledge of parsing
algebraic equations is perceptual learning of “chunks” (cf. Servan-Schreiber & An-
derson, 1990) that implicitly characterize the syntactic structure of expressions and
equations (cf. Berry & Dienes, 1993; Kirshner, 1989; Reber, 1967). Students may
also acquire some explicit knowledge of semantic mappings of grammatical struc-
tures, suchasprecedence rules fororderofoperations.However, just asat thesyntac-
tic level, we believe substantial implicit knowledge is acquired at the semantic and
pragmatic levels. For instance, Alibali and Goldin-Meadow (1993) have shown that
whenstudentsare first learning tosolveproblemssuchas3+4+5=__+5, theyoften
have implicit knowledge of alternative hypotheses for meaning of the equal sign that
are independently revealed in speech and gesture. A student solving this problem
may simultaneously speak in accord with one hypothesis (“=” means one must give
ananswerandsay12or17)yetgesture (pointingat the5onbothsides) inaccordwith
another (“=” means balance).

To the extent that fluency with mathematical symbols is acquired largely
through implicit learning processes (Berry & Dienes, 1993; Reber, 1967), those
who have developed such expertise cannot easily and directly reflect on the diffi-
culties learners must overcome. This observation is consistent with Nathan &
Koedinger’s (2000a, 2000b) survey results that algebra teachers and educators
typically judge equations to be easier than matched story and word problems,
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contrary to the results reported here. As we gain expertise in concise symbolic
languages such as equations, it feels as though we can transparently understand
and solve them, as one teacher said, “without thinking.” It is tempting to project
this ease onto students and not recognize the difficulties learners experience in
learning to comprehend and use mathematical symbols (e.g., Figures 5a and 5b).
At the same time, our expertise and corresponding awareness of the formal
method for solving a problem (e.g., Figure 2a) can lead us to underestimate the
informal understandings and strategies (e.g., Figures 2b and 2c) that students
may bring to a content domain.

We have coined the phrase expert blind spot to refer to this tendency, on one
hand, to overestimate the ease of acquiring formal representation languages, and
on the other hand, to underestimate students’ informal understandings and strate-
gies (Koedinger & Nathan, 1997; Nathan, Koedinger, & Alibali, 2001). Expert
blind spot has clear consequences for the design and delivery of instruction.
Teachers or textbook writers cannot effectively provide instruction that builds on
students’ prior knowledge (Bransford, Brown, & Cocking, 1999) if they employ
incorrect assumptions about what incoming students know, what activities are par-
ticularly difficult, and what activities elicit informal understandings.

Methods of cognitive task analysis, such as the difficulty factors assessment and
the fine-grained analyses of students’ strategies and errors used in these studies,
can help to develop detailed theories of learner knowledge, implicit and explicit,
and how external representations and activities evoke that knowledge. Such re-
search is an important activity for the learning sciences because much of educa-
tional decision making may be incorrectly biased by explicit knowledge and be-
liefs that are at odds with the reality of student thinking and learning.
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