The Gene Editors Are Only Getting Started

Kyle Peterson:

Rewriting the code of life has never been so easy. In 2012 scientists demonstrated a new DNA-editing technique called Crispr. Five years later it is being used to cure mice with HIV and hemophilia. Geneticists are engineering pigs to make them suitable as human organ donors. Bill Gates is spending $75 million to endow a few Anopheles mosquitoes, which spread malaria, with a sort of genetic time bomb that could wipe out the species. A team at Harvard plans to edit 1.5 million letters of elephant DNA to resurrect the woolly mammoth.

“I frankly have been flabbergasted at the pace of the field,” says Jennifer Doudna, a Crispr pioneer who runs a lab at the University of California, Berkeley. “We’re barely five years out, and it’s already in early clinical trials for cancer. It’s unbelievable.”

The thing to understand about Crispr isn’t its acronym—for the record, it stands for Clustered Regularly Interspaced Short Palindromic Repeats—but that it makes editing DNA easy, cheap and precise. Scientists have fiddled with genes for decades, but in clumsy ways. They zapped plants with radiation to flip letters of DNA at random, then looked for useful mutations. They hijacked the infection mechanisms of viruses and bacteria to deliver beneficial payloads. They shot cells with “gene guns,” which are pretty much what they sound like. The first one, invented in the 1980s, was an air pistol modified to fire particles coated with genetic material.